Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress

نویسندگان

  • Aayudh Das
  • Paul J. Rushton
  • Jai S. Rohila
چکیده

Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.)

Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putati...

متن کامل

Response of Growth, Photosynthetic Gas Exchange, Translocation of C-labelled Photosynthate and N Accumulation in two Soybean (Glycine max L. Merrill) Cultivars to Drought Stress

Two soybean (Glycine max L. Merrill) cultivars, Shin-Tanbakuro and Midori, were grown under mild water stress conditions for 11 days at the vegetative growth stage in order to examine the effect of drought stress on plant biomass production, photosynthetic gas exchange, chlorophyll fluorescence and photoassimilate translocation along with changes in carbohydrates and nitrogen. Relative growth r...

متن کامل

تاثیر تنش خشکی بر صفات کلروفیل و پرولین در ژنوتیپ‌های مختلف سویا (Glycine max)

Soybean (Glycine max) is sensitive to drought stress, and increasing its yield, requires the selection of tolerate varieties which are adapted to semiarid or low water climates of Iran. In this research, the experiment was performed based on a factorial completely randomized design with three replications at 2013. Experimental factors were consisted of 8 genotypes of soybeans and 6 levels of dr...

متن کامل

Metabolite Adjustments in Drought Tolerant and Sensitive Soybean Genotypes in Response to Water Stress

Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1)H NMR-based metabolite analysis comb...

متن کامل

The Effect of Potassium (K) and Boron (B) Foliar Application on Quantitative and Qualitative Traits of Sugar Beet (Beta vulgaris L.) under Drought Stress Conditions

In order to study the effects of foliar application of potassium (K) and boron (B) and dificit irrigation treatments on quantitative and qualitative traits of sugar beet (Beta vulgaris L.), a split plot experiment was conducted based on randomized complete block design with three replications in the Research Field of Shahrekord University, Shahrekord, Iran, in 2019. The main plots were allocate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017